Alpha tomography, calibrations and backgrounds in the LUX dark matter experiment

Carlos H. Faham
Brown University

IDM 2012
Chicago
The LUX Detector
The LUX Detector

- 350 kg LXe detector
- 122 PMTs (2” round)
- Low-background Ti cryostat
- PTFE reflector cage
- Thermosyphon used for cooling (>1 kW)

See K. Gibson’s plenary talk tomorrow
Xe Circulation

Weir

Active Region

Filler-Chiller Shield

Internal

Two Phase Heat Exchanger

Evaporator

Condenser

External

Outgoing

Incoming

Vacuum Heat Exchanger

Mass Flow Controller

Circulation Pump

Getter

C.Carmona
• Early in the run, using diagnostic pressure and LXe level sensor data, we discovered that a specific point in the condenser circulation path was opened to the bath.

• This location was predicted to be a loose fitting, which compromised the Xe circulation path.

• In order to learn more about the actual Xe flow path, we injected 222Rn as an alpha “tracer” source, for a real-time tomography.
Rn Injection
Rn Injection

• 150 Bq of 222Rn were injected in the system to trace Xe circulation path by looking at the evolution of the large alpha signals over time.

• This rate guaranteed that alpha signals would still be available for calibrations at the end of the surface run, while still keeping 210Pb backgrounds subdominant.
Pay close attention:

- Detector tomography time-lapse shows alpha tracer entering the active region from above heat exchanger at $t = +0.6$ min.

- At $t = +10$ min, a new hit pattern forms on the bottom PMT array, directly below original entry point.
Alpha Peaks

\[S_{1_{\text{weighted}}} = S_{1_{\text{top}}} \times \cos(0.33) + S_{1_{\text{bot}}} \times \sin(0.33) \]

LUX Preliminary
At the end of the surface run, the detector was opened, and a visual inspection confirmed both runtime diagnostics from instrumentation data and alpha tomography.
Position Resolution
Beta-Alpha Physics from BiPo

- 222Rn
- 218Po
- 214Bi
- 210Pb
- 210Po

Radioactive Decays:
- 222Rn → 218Po (3.8 days)
- 218Po → 214Bi (3.1 m)
- 214Bi → 210Pb (27 m)
- 210Pb → 210Po (160 µs)
- 210Po → 210Bi (5 days)
- 210Bi → 210Pb (22 years)
- 210Pb → 210Po (138 days)
This coincidence event is highly localized in x,y,z.

Beta range (E\text{mean} = 642 \text{ keV}) in LXe is \sim 1.5 \text{ mm}

Alpha range in LXe is \sim 50 \mu\text{m}

\(^{214}\text{Bi} \) lone beta (18% BR)

\(^{214}\text{Po} \) 7.7 MeV alpha

\(Q_\beta = 3.2 \text{ MeV} \)

\(\tau_{1/2} = 164 \text{ \mu s} \)
Sample β-α Bi-Po event in surface data

Pulses < 100 phe not displayed

Position reconstruction computed with Zeplin III Mercury algorithm (Solovov, arXiv:1112.1481v1)
Bi-214 half-life measurement with S1

Actual 214Bi decay half-life is 164 μs
Alpha Populations - High and Low S2 Yield

Gate wire alphas
~5x10^5 phe S2 yield
("High Energy")

Bulk alphas
3x10^2 - 3x10^4 phe S2 yield
("Low Energy")
x,y Statistical Component of Resolution

Bulk alphas

- Alpha S2 signal equivalent to ER gamma $S2(z=0) < 20$ keV$_{ee}$
- The statistical resolution in x or y is 0.7 cm

- Δx between 214Bi β and 214Po α [cm]
- Δx between 214Bi β and 214Po α [cm]

- Δy between 214Bi β and 214Po α [cm]
- Δy between 214Bi β and 214Po α [cm]

Gate wire alphas

- Alpha S2 signal equivalent to ER gamma $S2(z=0)$ of ~200 keV$_{ee}$
- The statistical resolution in x or y is 0.21 cm

- Δx between 214Bi β and 214Po α [cm]
- Δx between 214Bi β and 214Po α [cm]

- Δy between 214Bi β and 214Po α [cm]
- Δy between 214Bi β and 214Po α [cm]
Position Reconstruction - Event Map
Position Reconstruction - Gate Wires

Charge focusing at the gate grid

$E_2 > E_1$

Grid

LUX

Position Reconstruction - Gate Wires

Projection along the wires

LUX

Preliminary

5 mm
Residual contamination
^{210}Pb Residual BG

- ^{222}Rn
 - 3.8 d
 - α to ^{218}Po
 - 3.1 m
 - α to ^{214}Pb
 - 27 m
 - β to ^{214}Bi
 - 20 m
 - β to ^{214}Po
 - $160 \mu s$
 - α to ^{210}Bi
 - 5 d
 - β to ^{210}Pb
 - 22 y
 - ^{210}Po
 - 138 dy
 - α to ^{206}Pb
\(\text{210Pb Residual Contamination} \)

- We consider the worst-case scenario where every \(\text{222Rn} \) daughter is attached to a fluorinated surface (PTFE) that leaves a residual \(\text{210Pb} \) atom in it.

\[
R_{\text{210Pb}} = R_{\text{222Rn}} \times \frac{T_{\text{222Rn}}}{T_{\text{210Pb}}}
\]

\[
R_{\text{210Pb}} \approx \frac{R_{\text{222Rn}}}{2130}
\]

- Our 150 Hz initial \(\text{222Rn} \) activity would then correspond to 70 mHz of \(\text{210Pb} \) residual activity. This will yield \(\sim 11.2 \) n/yr from (alpha,n) reactions in F, which represents 7.5\% of the expected total PMT neutron rate (150 n/yr).
Thank You